
SC-MAG-553 LBNL-38870

Automating Pro/Engineer Using Trail Files
and External Programs

Ken Chow
Lawrence Berkeley National Laboratory.

May 21, 1996

Keyboard macros provide shortcuts to many repetitive command sequences in
Pro/Engineer'. They map any number of frequently used command sequences to user
selected keyboard keys. They may be nested .~ithin each other and may also include user
keyboard entry within the macro.

Another powerful feature of Pro/Engineer is adding menu options. Menu options may be
added to any Pro/Engineer menu and is an effective way to graphically display keyboard
macros to make them more accessible. Command sequences are mapped to a single user
defined menu option added to the bottom of any Pro/Engineer window. The "@setbutton"
command added to the "menu_def.pro" file specifies the commands to associate with added
menu options.

Menu options may also be used to execute non-Pro/Engineer commands. The associated
command is linked to a menu option within Pro/Engineer's Utilities menu (in the Misc
menu) and is issued whenever the menu option is selected. Such a feature is useful for
adding menu options to start the Pro/Engineer User Guide utility, start a text editor from
within Pro/Engineer, or perfonn system level actions. The "@setbutton_exec" command is
used in the "menu_def.pro" file for non-Pro/Engineer commands. A more detailed
description of adding menu options can be found in the Pro/Engineer Fundamentals Guide.

Another useful component of Pro/Engineer is the trail file functionality. Trail fIles are
automatically created every time a new working Pro/Engineer session begins. Although
they are typically used to reconstruct a previous working session, they can also be used to
automate a series of commands. By specifying all the commands in a trail file, a user can
issue the commands quickly and repetitively using the command sequence "Misc-Trail" and
specifying the trail file name. All actions, including keyboard entries and mouse click
locations, may be included in a trail fIle.

Although adding menu options and using trial files provide powerful functionality in
Pro/Engineer, neither the menu options functionality nor trail files allow interaction
between the model and the commands to perfonn. The commands perfonned by the menu
options are static and cannot depend on model features and parameters. Commands cannot
query the model and perfonn different actions or calculations based on the query results;
the menu options commands cannot interact with Pro/Engineer. As an example, suppose
we wish to generate a feature listing for all parts and subassemblies in a model. We can add
a menu option or a keyboard macro to make the feature listing command easier to execute,
but we would still need to select each part and subassembly individually (either through
screen selection, selection by menu, or entering the component name). The task becomes
quite tedious if we have an assembly with a large number of subassembly and part
components.

I "Pro/ENGINEER User's Guides Release 16.0", Parametric Technology Corporation, 128 Technology
Drive, Waltham, MA, 1995.

- I -

SC-MAG-553 LBNL-38870

A versatile and powerful method for automating many Pro/Engineer tasks is to combine the
menu options functionality with Trail files and the infonnation files which Pro/Engineer
creates during infonnation listings. The combination provides communication between
Pro/Engineer and other programs and enables automation of a large variety of commands.

The automation scheme is comprised of three components:
• the infonnation files (usually with extensions "inf' or "1st")

• a menu option to issue a program or command external to Pro/Engineer
• a menu option to run both the external program and its associated trail file

Figure I shows how each of the components-are linked together. Each are discussed in the
following sections_

The illformatioll files

Pro/Engineer writes many infonnation files to the launching directory (the directory from
which Pro/Engineer was launched) when infonnation listings are requested. Theseiiles are
in ASCII text fonnat. By first issuing commands to create an infonnation file, external
programs can then be used to read the infonnation files and perfonn calculations and other
actions based on values in the files. For example, we can define a parameter called
HEIGHT and issue "Setup-Parameter-Info" to create the "param.inf' file. Any external
program or script can then be issued to read "param.inf', extract the HEIGHT value, and
perfonn calculations or actions based on this value.

Six common infonnation files are listed in Table I. Although many other infonnation files
are available, the six listed in Table I are generally the most useful for automation
purposes. In particular, the "param.inf' file is very versatile since it can be used in most of
the Pro/Engineer modules and many different items may defined as a parameter.

External program mellu optioll

A menu option should be added to the Utilities menu to run the external program or
command. The external program should be written to read the infonnation file, perfonn any
desired calculations or actions, and then write a viable Pro/Engineer trail file. The external
program may be a FORTRAN compiled program, a shell or awk script, or any program
which can read the infonnation file and write a trail file. Several different programs and
commands can even be linked together under a single menu option.

Pro/Engineer is generally very sensitive to trail files and exits prematurely if an unexpected
command is encountered during reading of a trail file. To ensure the external program
writes a viable trail file, it is best to manually issue the desired commands in a Pro/Engineer
session and use the automatically created "trail.txt" file as a template for the external
program. The first two lines of a trail file must include the Pro/Engineer header
infonnation. Most system messages may be deleted from the trail file and keyboard entries
may be included. However, it is generally not advised to include mouse activity in a
manually created trail file since all mouse activity assumes a specific size active window to
locate the mouse clicks. When the trail file is run with a different size active window, the
program will exit prematurely. Instead of using the mouse to select items, the trail file
should use "Select By Menu" and select items based on name, !D, or item number.

- 2 -

..

SC-MAG-553 LBNL-38870

Automatioll mellu optioll

Although the user can run the external program and subsequently issue "Misc-Trail" to run
the trail file, a more efficient system is to add a second menu option which selects the
external program menu option from the Utilities menil and then selects "Misc-Trail" to
automatically run the associated trail file once the external program is finished. Unlike the
external program menu option, this automation menu option may be placed on any menu
since it consists of only Pro/Engineer commands.

We may also define a keyboard macro instead of creating an automation menu option.

Olher optiOllS

The automation scheme is very versatile. The external program may be written in any
format and can be used to perform any type of calculation or function. The scheme may
also be modified for many other duties:

• exclude reading of information--to automate a combination of commands which may be
too long or complicated for keyboard macros (such as when the commands involve
numerical calculations)

• exclude writing a trail file--to extract and reformat model parameter information for use
as input to other programs

• exclude both information and trail file--to automate a complicated function external to
Pro/Engineer (such as running a script to generate a tabulated and sorted list of files in
the working directory)

The automation scheme has been successfully implemented in a utility called ProBEND to
automatically generate parts and automatically assemble the parts into an assembly
representing a solid model of a magnet coil. The utility uses a 2D cross section, runs an
external FORTRAN program to perform calculations of minimum strain energy, and
automatically generates a magnet coil model based on the FORTRAN program calculations.

- 3 -

SC-MAG-553 LBNL-38870

Example 1: Automatic Creatioll of Shade Plots Based 011 Model Height

Figure 2 displays the model. In the model dimension d3 is set equal to a user defined
parameter called HEIGHT. We wish to create a menu option in the Part menu which
automatically creates a shaded Postscript plot if HEIGHT is less than 20. The added menu
option is useful if we had to perform the same operation on many different models.

Issuing "Setup-Parameter-Info" displays the parameter listing on the screen and also writes
the "param.inf' file to the working directory. The FORTRAN program "heightplot" is
written to read the "param.inf' file, determine if a Postscript plot should be generated, and
then write a trail me if a plot file is needed. -

Program "heightplot" is shown in Figure 3. The trail file which is written by "heightplot"
(if HEIGHT is less than 20) is shown in Figure 4. Heightplot names the trail file
"plottraiLtxt" and places it in the working directory.

Two menu options are created:
• a menu option called "HTPLOT Prog" is added to the Utilities menu for executing

program "heightplot"

• a menu option called "HeightPlot" is added to the Part menu which first selects the
"HTPLOT Prog" menu option and then issues "Misc-Trail" to run the "plottraiLtxt" trail
file.

The two "menu_def.pro" entries to add the two menu options are shown in Figure 5. Note
that a dummy menu entry is used to add a separator between the regular menu options and
the added menu option in the Part menu.

To issue the command, the user simply issues "Setup-Parameter-Info" and then clicks on
the "HeightPlot" menu option in the Part menu. If the HEIGHT parameter is less than 20, a
Postscript file called "height.ps" is created, otherwise nothing happens.

- 4 -

..

SC-MAG-553 LBNL-38870

Example 2: Creating Feature Lists of All Model Parts and Subassemblies.

A useful utility for documentation of Pro/Engineer models is the feature list. The feature list
provides information on all features in a model, including the feature numbers, ID values,
and status. It is often useful to refer to the feature list to obtain feature numbers or ID
values so that you can select features using "Select by Menu". Generating a list of all the
features in a large assembly is also useful for documentation of the model.

In Pro/Engineer, generating a complete feature list for all the parts and subassemblies
becomes quite tedious when the assembly is large and complicated. The user uses the
"Info" menu and has to individually select each part and subassembly in the assembly. This
example shows how to use the automation scheme to automatically generate a complete
feature list for all parts and subassemblies in a model.

Ordinarily, we select the menu commands "Info-Feature List" to get a listing of the features
for a part or subassembly. When the feature list command is issued, Pro/Engineer displays
the features on the screen but also creates a feature list file named "feature.lst" in the
launching directory. To automatically list all the features in all parts and subassemblies, we
simply need to repetitively issue the "Info-Feature List" command for each part and
subassembly in the model. There are two problems which need to be addressed:
• how do we get a list of all the parts and assemblies in the model?
• how do we keep the feature list file "feature.lst" from being overwritten each time we

issue a feature list command?

To solve the first problem, we note that an assembly tree containing information on all parts
and subassemblies is listed when we issue the command sequence "Info-Model Info-Top
Level", and that the information is also contained in a file named "modelrzame.inf.n",
where model1lUme is the name of the model and n is a sequentially increasing integer. We
therefore simply need to issue "Info-Model Info-Top Level" and extract the part and
subassembly names from the "model1lUme.inf.n" file.

To solve the second problem, we issue a system level command which appends file
"feature.lst" to a global file before each new feature listing. The global file will thus contain
all the feature lists when the commands are completed.

Two shell scripts and one awk program are used to set up automatic feature listing:
1. lisuop_lvl UNIX shell script which creates a Pro/Engineer trail file called

"listl.txt". "listl.txt" runs command sequences which creates a top
level feature list file ("feature.lst") and a file with assembly tree
information ("modelname.inf.l"). The script insures that file
"modelname.inf.l" ends with a 1 by deleting all existing files with a
"inf' extension.

2 . liscalijeat UNIX shell script which gets the model name from the top level
feature list file ("feature.lst") and then runs an awk program on the
assembly tree information file ("modelname.inf.l"). The awk
program commands are contained in file "listfeat.awkin". The top
level feature listing file is copied to the global feature list file
("allfeat.lst") after the awk program is completed.

3. listfeat.awkin An awk program which extracts names of all the parts and
subassemblies and writes a Pro/Engineer trail file called "list2.txt".
"list2.txt" issues the command sequence "Info-Feature List
Assembly-Name" for each subassembly and "Info-Feature List-Part
Name" for each part. "list2.txt" also issues the command sequence

- 5 -

SC-MAG-553 LBNL-38870

"Misc-Utilities-Append Feat" (see menu button #3 below) between
each feature list command.

The shell scripts are linked together through added menu options defined in the
"menu_def.pro" file. This file adds the following menu buttons:
I. List Top Lvi Utilities menu button. Button runs shell script "lisuop_lvl".
2. List AllFeat Utilities menu button. Button runs shell script "liscall_feat".
3. Append Feat Utilities menu button. Button runs system command to append file

"feature.lst" to file "allfeat.lst".
4. Clean Up Utilities menu button. Button runs system command to delete files

created by menu buttons 1-3.
5. All Features Assembly menu button. Button performs following functions:

a. runs command sequence "Misc-Utilities-List Top Lvi"
b. runs trail file "listl.txt"
c. runs command sequence "Misc-Utilities-List AIIFeat"
d. runs trail file "list2.txt"
e. runs command sequence "Misc-Utilities-Clean Up"

To generate a file containing feature lists for all parts and assemblies in a model, the user
simply selects the "All Features" menu button from the Assembly menu. A file named
"allfeat.lst" containing all the feature lists will then be written to the current directory.

The shell scripts and "menu_def.pro" definitions are shown in Figures 6-9.

- 6 -

SC-MAG-553 LBNL-38870

File Name Command to create file Information In file
liJaram.inf "Setup-Parameter-Info" user defined parameter names and values
rels.inf "Relations-Show Relations" relations and values
feature.lst "Info-Feature List- .. . " feature names, numbers, ill's in part or

assembly
modelname.inf.# "Info-Model Info-Too Level" comoonent assembly tree for model
feaU.ihl "Modify-Value' cross section coordinates for parts

(in Part Mode) created using "blend from file"
partname.ptd "Save" family table instances

(after creating Family Table)

Table I. Several common information files created by Pro!Engineer.

START

1
Issue command

to write
information file

I -- -1--- -- -- -- -- -- -- -- --
Automation menu option a

I :
Ii

I

I '
I
L

---- -- ----------- --- -------------------------------
External program·-added to Utilities menu as

Read information Run program Write Pro/Engineer
file calculations trail file

-- -------
1--------- -------
I
I

Run trail file I
I
I
I
I
I
L ________

--------- -- -- -- -- -- -- --

STOP) I

dded to any menul

---------,
a menu option I

i I
---------: I ---------,

t
Mise-Trail :: I
railfilename

I

_________ i I

Fig.!. Automation scheme using added menu options, trail files, and information file.

- 7 -

SC-MAG-553

, , ,

, , ,

, , ,

, ,

, ,

, ,

, , , ,

Fig. 2 Cylinder model.

- 8 -

LBNL-38870

RdO

SC-MAG-553

PROGRAM HEIGHTPLOT
•

INTEGER
REAL
CHARACfER

endf,plo t
height,numval
coname*18

•
* Read HEIGHT parameter value from param.!nf
•

endf- O
OPEN (UNIT-20, FILE- 'param.inf', STATUS- 'OLD')
read(20,*)
read(20,*)
read (20, *)

read (20, *)
read (20, *)

DO while (endf.eq.O)
READ (20, lOOO,END-900) coname,numval
IF (coname.eq. 'HEIGHT

height-numval
END IF
goto 999

900 CONTINUE
endf-l

999 CONTINUE
ENDDO
c lose (20)

1000 FORMAT(lX,a18,22X,lpe12.6)

')then

•
* Determine if Postscript plot should be generated
•

•

if (height.lt.20.)then
plot-l

else
plot-O

endif

* Write Trail file
•

•

open(UNIT-22,FlLE-'plottrail.txt',STATUS-'UNKNOWN')
write (22, 5000)
if (plot.eq.l)then

write(22,50l0)
endif
close (22)

5000 FORMAT(' !trail file version No. 876'
I /'!Pro/ENGlNEER TM Release 16.0 (e)
I '1988-95 by Parametric Technology .
I 'Corporation All Rights Resexved.·)

5010 FORMAT('IVIEW'/'ICOSMETIC'/'ISHADE'/'IDISPLAY'/'IPOSTSCRIPT'
I /'IDESIGNJET65OC'/ ' IRESOLUTION'/'llOO DPI'/'IIMAGE SIZE'
I /'fA'/'iOUTPUT TO PS'/'YES! '/'he ight'/'IDONE-RETURN')
STOP
END

Fig. 3. HEIGHTPLOT Program for generating plot file if
HEIGHT parameter is less than 20.

-9-

LBNL-38870

SC-MAG-553 LBNL-38870

!trail file version No. 876
!Pro/ENGINEER TM Release 16.0 (c) 1988-95 by Parametric Technology Corporation All
Rights Reserved.
IVIEW
iCOSMETIC
I SHADE
lorSPLAY
'POSTSCRIPT
tDESIGNJET650C
iRESOLUTION
noo DPI
*IMAGE SIZE
tA
tOUTPUT TO PS
YES!
height
tDONE-RETURN

Fig. 4. Trail file "plottrail.txt" written by program HEIGHTPLOT.

@setbutton_exec UTILITIES HTPLOTtProg "heightplot" "Runs HEIGHTPLOT program"
@setbutton PART ==="'~""""EI ______ """"="" It"

@setbutton PART HeightPlot "#MISC;#UTILITIES;'HTPLOT Prog;#TRAIL;p!ottrail;\
'DONE-RETURN" "Runs HeightPlot and its trail file."

Fig. 5. "menu_def.pro" entries to add menu options for
HEIGHTPLOT and HTPLOT Prog.

- 10 -

SC-MAG-553

i Shell script list_top_lvl: creates a ProE trail file which performs
41: two actions:
i 1. writes out file

• 2. writes out file
• feature. 1st

*
-->

• feature . 1st •
'modelname.inf.l'
listing of top level features also used
for getting the name of the model

i modelname.inf.l --> file for getting subassem and part names
i Trail file name is 'listl.txt'

* i Ken Chow

• May 21, 1996
t --.
rm -f *.10f . *
echo' !trail file version No. 876' > listl.txt

LBNL-38870

echo • !Pro/ENGINEER TM Release 16.0 (c) 1988-95 by Parametric Technology
Corporation All Rights Reserved.' » listl.txt
echo 'iINFO' » listl.txt
echo '.FEATURE LIST' » listl.txt
echo' !Select assembly.' » listl.txt
echo 'fTOP LEVEL' » listl . txt
echo' !Select assembly.' » listl.txt
echo 'fOONE/RETURN@INFO' » listl.txt
echo "INFO' » listl.txt
echo 'iMODEL INFO' » listl.txt
echo' !Select assembly.' » listl.txt
echo "TOP LEVEL' » listl.txt
echo' !Information written to file filename.inf.l . ' » listl.txt
echo' !Select assembly.' » listl.txt
echo "OONE/RETURN@INFO' » listl.txt

Fig. 6. Shell script "lisuop_lvl".

t Script file list_alI_feat:
t 1. Gets the model name from top level 'feature.lst' file
t 4. Reads 'modelname.inf.l' to get subassem and part names and

* • • f

then writes a ProE trail file named 'list2.txt' to generate
feature listing files ('feature.lst') of all subassemblies
and parts. Trail file also appends feature listing files to
model feature listing file called 'allfeat.lst'

• 3. Renames top level 'feature . lst' file to 'allfeat.lst'.

•
• Ken Chow
t May 21, 1996

f---------------------------------------
fnam-' awk '/MODEL NAME/ {print tolower ($4)". inf .1")' feature. 1st '
cat $fnam I awk -f listfeat.awkin - > list2.txt
mv feature.lst allfeat.lst

Fig. 7. Shell script "liscall_feat".

- 11 -

SC-MAG-553

. f Awk input file 'listfeat.awkin' used in script 'list_alI_feat'
• Writes a ProE trail file which selects each model subassembly and part
i and lists its features. Also runs menu option 'Append Feat' after each

LBNL-38870

.. feature listing to catenate files into one large file named 'allfeat.lst'.
f
t Ken Chow

f May 21, 1996
* --
BEGIN {print" !trail file version No. 876 ";

print "!Pro/ENGINEER TM Release 16.0 (c) 1988-95 by Parametric Technology
Corporation All Rights Reserved."} .. print trail file header
/LEVEL/ && /ASSEM/ {if ($2! - 1) (print "UNFO";

print "'FEATURE LIST":
print "! Select assembly.";
print "iASSEMBLY":
print "!Select assembly .":
print "iNAME":
print "!Enter assembly name:";
print $3:
print "iMISC":
print "fUTILITIES";
print ".APPEND FEAT";
print "fDONE/RETURN@ INFO"))

/LEVEL/ && /PART/ {if ($2!-1) (print "UNFO" ;
print "ltFEATURE LIST":
print "!Select assembly.";
print "iPART" ;
print "!Select PART. ";
print "tNAME";
print " ! Enter part name:" ;
print $3;
print "fl:MISC";
print "fUTILITIES";
print "iAPPEND FEAT";
print "'DONE/RETURN@ INFO"))

Fig. 8. Awk input file "listfeat.awkin".

@setbutton_exec UTILITIES ListiToptLvl "sh list_top_lvl" "Creates trail file for top
level feature listing ."
@setbutton_exec UTILITIES ListtAllFeat "sh list all feat" "Creates trail file for
listing features in all parts."
@setbutton_exec UTILITIES AppendtFeat "cat feature. 1st » a1lfeat.lst" "Appends
feature list file to allfeat.lst file . "
@setbutton_exec UTILITIES CleantUp "rm -f feature.lst *.inf.l listl.txt list2.txt"
"Cleans up directory."
@setbutton ASSEMBLY -------------- "" ""
@setbutton ASSEMBLY AllFeatures "tMISC;iUTILITIES;tList Top Lvl;iTAAIL;listl;iMISC;\
*UTILITIES;Uist AllFeat;'TRAIL;list2;*MISC;'UTILITIES;fClean Dp;fDONE-RETURN"\
"Creates file allfeat .lst--listing of all subassem and part features."

Fig. 9. Menu button definitions used in file "menu_def.pro".

- 12 -

